
Martin Mihajlov
in partnership with

The Simplified Beginner’s
Guide To Javascript

JAVASCRIPT

AGILE PROJECT MANAGEMENT

Audiobook Companion PDF

2

Copyright © 2015
ClydeBank Media LLC

www.clydebankmedia.com
All Rights Reserved

ISBN-13 : 978-0-9963667-3-1

Copyright 2015 by ClydeBank Media - All Rights Reserved.

This document is geared towards providing exact and reliable information in regards to the topic and issue covered. The publication is
sold with the idea that the publisher is not required to render accounting, officially permitted, or otherwise, qualified services.
If advice is necessary, legal or professional, a practiced individual in the profession should be ordered.

From a Declaration of Principles which was accepted and approved equally by a Committee of the American Bar Association and
a Committee of Publishers and Associations. In no way is it legal to reproduce, duplicate, or transmit any part of this document in
either electronic means or in printed format. Recording of this publication is strictly prohibited and any storage of this document is
not allowed unless with written permission from the publisher.

The information provided herein is stated to be truthful and consistent, in that any liability, in terms of inattention or otherwise, by
any usage or abuse of any policies, processes, or directions contained within is the solitary and utter responsibility of the recipient
reader. Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages,
or monetary loss due to the information herein, either directly or indirectly. Respective authors own all copyrights not held by
the publisher. The information herein is offered for informational purposes solely, and is universal as so. The presentation of the
information is without contract or any type of guarantee assurance.

Trademarks: Java and JavaScript are registered trademarks of Oracle and/or its affiliates All trademarks are the property of their
respective owners. The trademarks that are used are without any consent, and the publication of the trademark is without permission
or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only and are owned by
the owners themselves, not affiliated with this document.

ClydeBank Media LLC is not associated with any organization, product or service discussed in this book. The publisher has made
every effort to ensure that the information presented in this book was accurate at time of publication. All precautions have been
taken in the preparation of this book. The publisher, author, editor and designer assume no responsibility for any loss, damage, or
disruption caused by errors or omissions from this book, whether such errors or omissions result from negligence, accident, or any
other cause.

Cover Illustration and Design: Katie Poorman, Copyright © 2015 by ClydeBank Media LLC
Interior Design: Katie Poorman, Copyright © 2015 by ClydeBank Media LLC
Updated: March 2017

ClydeBank Media LLC
P.O Box 6561

Albany, NY 12206

Printed in the United States of America

4

|1| Introduction
 What is JavaScript?
 The Birth & Growth of Java Script
 Implementing JavaScript
|2| Fundamental Concepts
 Syntax
 Statements
 Variables
 Variable Types
 User Variables
 Operators
 Mathematical Operators
 Assignment Operators
 Comparison Operators
 Logical Operators
 Arrays
 Working with Array Items
 Managing Array Elements
 Comments
|3| Conditional & Loop Statements
 Conditional Statements
 Alternative Conditions
 Multiple Conditions
 Loop Statements
 While Loops
 For Loops
 Loops & Arrays
|4| Functions

6
6
7
8
10
10
11
14
15
16
17
18
20
22
23
24
24
26
28
29
29
30
32
33
34
34
36
39

table of contents

5

 Creating Functions
 Sending Information to Functions
 Retrieving Information from Functions
 Local & Global Variables
|5| Objects
 What Are Objects?
 Creating Objects
|6| Document Object Model
 Fundamental DOM Concepts
 Selecting Document Elements
 Selecting Individual Elements
 Selecting Group Elements
 Traveling Through the DOM
 previousSibling & nextSibling
 Parents & Children
 Adding and Managing Content
 Changing HTML
 DOM Manipulation
|7| Events
 Event Types
 Reacting to Events
 Event Handlers
 Event Listeners
Summary & Moving On
Glossary
About ClydeBank Technology

39
43
46
48
51
51
52
57
57
59
59
61
63
63
64
65
65
66
69
69
71
72
75
77
79
81

6

CHAPTER ONE

HTML is not very smart. It lets people look at text and images and allows them to
move to other pages where they will do more of the same, but what adds the intelligence
to a web page is JavaScript. It makes the website more engaging, effective, and useful
by letting pages respond to their visitors as they interact with the content.

This book assumes that you already know how to use HTML to specify web
page structure and content. It is also beneficial if you are familiar with how pages
are styled with CSS. If this is the case, then you are ready to make it more dynamic
and interactive with JavaScript. Without HTML and CSS, JavaScript will not do
you much good. They are the three fundamental pillars of the web page: structure,
presentation and behavior.

This book begins with an introduction to JavaScript and programming in general.
Step-by-step, it explores the building blocks of programming logic as they exist in
JavaScript. It efficiently builds on these fundamentals to introduce interaction and
then moves into slightly more advanced territory with functions and objects. Finally,
it introduces the DOM model and shows how to effectively control the browser and
all its content.

What is JavaScript?
JavaScript is the scripting language of the web. Its sole purpose is to add

interactivity to pages. In addition to interactivity, modern versions of JavaScript can
also be used to load and parse information from external sources or even the website’s
users. JavaScript is essentially a piece of programming code embedded in the HTML
structure of a web page. When the web browser reads this code, it activates a built-in
interpreter that understands how to decipher this language and process its commands.

Although programming is involved during coding, JavaScript is not a programming

Introduction

Terms displayed in bold
italic can be found defined
in the glossary on pg. 79.

7

Introduction

language. In conventional web programming languages,
like Java or .NET, the code has to be compiled before it
is executed. Compiling means that the code has to be
first sent to a special program that is run on the server.
This program, also known as application server software,
translates the code, creates the requested page and
functionality and serves this back as HTML. Scripting
languages like JavaScript are not compiled, but rather
are interpreted on-the-fly. This means that no special
software is involved as the user’s own browser runs and
executes the code as it is encountered.

The Birth & Growth of JavaScript
Initially called LiveScript, JavaScript was created by

Brendan Eich in 1995 in just 10 days. It was meant to
add scripting capabilities to the front-end interface of
the Netscape Navigator browser. However, the language
was so well received that within a year it was reverse-
engineered and included in the Internet Explorer
browser. By 2000 the language gained a lot of popularity
and expanded significantly so it was submitted for
standardization to the ECMA Committee.

Once it became standardized, JavaScript continued
to grow in adoption and popularity in tandem with the
expansion and growth of the World Wide Web and the
refinements of the browsing experience. As a matter
of fact, Google gave it a big push into the professional
spotlight when it released Google Maps in 2005 and
showed how JavaScript can be used to create exciting
and dynamic interaction.

JavaScript was created
during a time when
Java was a very popular
language. Other than
that, the languages are
not related and have
nothing in common
except for basic
programming logic.

JAVASCRIPT QUICKSTART GUIDE

8

Implementing JavaScript
As JavaScript code is part of the HTML document, you need to tell browsers

when to run your scripts. There are two common options available when you want
to include JavaScript in a web document, and in both cases you use the <script>
element. The <script> tag tells the browser where the JavaScript code begins and
where it ends within an HTML document. As such, this tag can be included either in
the head or the body section of the page.

The first option is to place the code inline within the document structure. To
do this, open a <script> tag, enter the JavaScript code, and then close with the
</script> tag. You can theoretically leave the document like this, as almost all
browsers assume that the scripting language between the <script> tags is JavaScript
by default. Nevertheless, for maximum compatibility, extend this tag with the type
attribute and the text/javascript value in order to instruct the browser how to exactly
interpret the code.

<script type="text/javascript">
//A JavaScript comment

</script>

The second option is to load the JavaScript code from an external file into your
HTML document. For this purpose you can use the <script> element again, but
this time in addition to the type attribute you also include the URL to the external file
in the src attribute of the <script> element. The external file must be a text-only file
with the .js file extension that contains only pure JavaScript code without any HTML
elements or CSS rules. For example, to call the external scripts.js file into your browser,
use the following code:

<script src="script.js" type="text/javascript">
</script>

Put JavaScript in an external file and include it in the web page when you like to
share the functionalities across your entire web site. Otherwise, if you just need to add

9

Introduction

some local interactive behavior, embed the code within
the page.

Script files are loaded
in the order in which
they are placed in the
HTML code.

10

Generally, when we hear the term “programming” we immediately think of other people
typing an incomprehensible string of letters and numbers. Programming looks like
magic beyond the realm of mere mortals. Nevertheless, the concepts in programming
are not difficult to grasp, as they always have real life applications. JavaScript, although
it is not as simple as HTML or CSS, is not an overly complicated language. Unlike
other languages, its “grammar” is more or less descriptive and intuitive making it a
good fit for a first programming language. Basically, learning JavaScript is like learning
a new language, but a new language that is similar to English. Once you learn the new
words and understand how to put them together to form “sentences,” you’ll be good
to go.

Syntax
Every language has its own characters and words that we arrange into a well-

formed sentence according to a set of rules. These rules are also known as the language
syntax, and it is the syntax that holds the language together and gives it meaning.

Before you start with some examples of JavaScript syntax, you must first set up
the environment for JavaScript. As discussed previously, JavaScript code is always a
part of the HTML code. Therefore, in order to work with JavaScript you first need to
create a basic HTML document. So to start, open a text editor (like Notepad) and type
in the HTML code for the most basic web page. In addition to the basic HTML tags,
include a <script> element in the <head> section where you can start placing the
JavaScript code.

Fundamental Concepts
chapter two

11

Fundamental Concepts

<!doctype html>

<head>

<title>First Steps in JavaScript</title>

<script type="text/javascript">

</script>

</head>

<body>

</body>

</html>

Save this document as firststeps.html. If you are using Notepad, you have to
remember to change the Save as Type field to ‘All files.’

Statements
To express yourself in everyday common language, you use sentences as the basic

form of communication. Similarly, in JavaScript you also form sentences to express
your intentions, which are more formally called statements. A JavaScript sentence is
the basic unit of communication, usually representing a single step in the program.
And just like you put sentences together to express an opinion, you combine statements
together to create a program.

Here is a simple example of what a JavaScript statement does. Between the
opening and closing <script> tag of the html document, place the following text:

alert("JavaScript is starting to make a little sense.");

JAVASCRIPT QUICKSTART GUIDE

12

Further examples do not show the complete HTML code unless it is necessary.
For initial reference your document should look like the following (fg. 1):

<!doctype html>

<head>

<title>First Steps in JavaScript</title>

<script type="text/javascript">
 alert("JavaScript is starting to make a little
sense.");
</script>

</head>

<body>

</body>

</html>

You can save the firsteps.html document and open it in a web browser. Once the
page opens, you get an alert window with the message “JavaScript is starting to make a
little sense.”

fg. 1 : Alert Window

13

Fundamental Concepts

Now that you know what the effect is, go back to
the JavaScript statement and interpret it into common
language so it makes more sense.

alert("JavaScript is starting to
make a little sense.");

JavaScript statements are instructions that are
executed by the web browser. The statement starts with a
command, presented by a keyword. The keyword identifies
the action that needs to be performed. In this case the
keyword alert makes the web browser open a dialog
box and display a message. If you just had the statement
alert(); the dialog box would have been empty, but
in this case the statement consists of a specific input, the
actual message text, also known as an argument. Finally,
just like every sentence ends with a period, a JavaScript
sentence ends with a semicolon. The semicolon makes it
clear that the statement is over, and once the interpreter
executes it, it should move on to the next item.

Now you are ready to translate the JavaScript
statement. Its plain English interpretation would be,
“Open a dialog box and display the text JavaScript is
starting to make a little sense’ in that box.”

Here is another JavaScript statement. In the
<script> element replace the previous code with
the following and preview it in a web browser to see the
results (fg. 2):

document.write("<p>JavaScript is
starting to make a little sense.</

p>");

When passing text
arguments, use either
double quote marks
("sense") or single
quote marks ('sense')
to present the text.

JAVASCRIPT QUICKSTART GUIDE

14

fg. 2 : Example of a document.write statement.

The previously empty document now has one paragraph of text. Following the
previous interpretation of how JavaScript works and from the web browser results you
can correctly assume that the document.write keyword commands the browser
to write directly onto the web page. Similar to alert(), it writes whatever is placed
between the opening and closing brackets.

Variables
One of the fundamental aspects of JavaScript, and any programming language in

general, is the concept of variables. A variable is a way to declare and store information
that can later be used. This information can vary with the circumstances, hence the
name “variable.”

Look at the following statement.

var name = "Martin";

15

Fundamental Concepts

In plain language this is the same as saying, “My
name is Martin.” The keyword var is JavaScript speak
for “create a variable,” or in a programming dialect,
“declare a variable.” What follows is the name of the
variable, which can be anything you choose with certain
limits. Assigning a value to the variable is done with the
= sign, which is not immediately necessary, as this can
happen later. You can declare an undefined variable in
one statement and assign it a value in a later statement.
For example:

var name;

name = "Martin";

As mentioned previously, variable names can be
anything, like: name, abc, R2D2, with a few rules.
Variable names can contain letters, numbers, dollar signs
($), or lower lines (_); other special characters are not
allowed. Furthermore, a variable name cannot begin
with a number, but any other allowed value is acceptable.
Finally, variable names are case-sensitive, meaning that
the interpreter in the web browser makes a distinction
between uppercase and lowercase letters, making
'score' different from 'Score.'

Variable Types
Based on the type of data, variables come in

different flavors. The three most basic types are number,
string, and boolean.

A number variable is represented by a numeric
character. This variable can accept whole integers,
negative integers and fractional integers. Numbers

Although you can use
almost anything for
a variable name, it is
wise to use names that
are meaningful because
it will help you and
other programmers to
better understand the
written code.

JAVASCRIPT QUICKSTART GUIDE

16

are frequently used in calculations, so our number variables are often included in
mathematical operations. The following statement declares a variable named age and
assigns it a value of 35.

var age = 35;

A string variable is used to represent any series of letters like words or sentences.
Strings are represented as a series of characters enclosed within quotation marks with
the quotation marks signaling to the interpreter that what follows is a string variable.
JavaScript allows you to use either double quotes (") or single quote (') marks, but you
have to be mindful to use the same type of quotation mark.

var location = "California";

A boolean variable is rather simple, as it can accept only one of two values: true
or false. This variable is used when you create JavaScript programs that you want to
intelligently react to user actions. This will be addressed in the next chapter.

User Variables
JavaScript would not be fun if it didn’t allow you to share your thoughts and

create or alter the variables directly. One of the simplest ways to “give” your input is to
use the prompt() command. (fg. 3)

var name = prompt ("What is your name?", " ")
document.write(name);

fg. 3 : A custom prompt dialog box

17

Fundamental Concepts

The result of the prompt() command is a dialog
box. Instead of just displaying a message like the alert
dialog box, the prompt dialog box can also receive an
answer. Hence, in the syntax for a prompt dialog box
it is necessary to provide two arguments between the
parentheses separated with a comma. The first argument
is the prompt text that is displayed in the box, while the
second argument is the default value for the text box, and
consequently, the variable.

In the example above, the prompt text displayed
in the box is ‘What is your name?’ and the default value
presented in the box is empty, as there is obviously no
content between the quotation marks. Once a user types
something in the box and either clicks OK or presses
the Enter key, the variable receives the value that was
entered in the field. Consequently, the name will be
displayed on the web page. Otherwise, if the user clicks
on Cancel, presses the Esc key or closes the prompt box,
the returned value will be empty and there will be no text
on the screen.

Operators
Storing information in a variable is a first step. The

beauty of programming is the ability to manipulate this
information in many creative ways. For this, JavaScript
provides different operators that allow you to modify
data. An operator, represented by a symbol or a word, can
change one or more values into something else. The types
of operators available are different based on the data type.

Instead of prompt()
you can also use
the more formal
window.prompt
command.

JAVASCRIPT QUICKSTART GUIDE

18

Mathematical Operators
The basic mathematical operators like addition

(+), subtraction (-), multiplication (*) and division (/)
are readily available in JavaScript. They can be used in
independent statements or when declaring variables.
For example (fg. 4), by “operating” with the variables
currentYear and yearofBirth, you can determine
the value of the variable age.

var currentYear = 2015;

var yearofBirth = 1979;

var age = currentYear - yearofBirth;

document.write(age);

Mathematical operators, specifically the addition operator, combine two or more
strings. This process of combining strings is called concatenation. In the following

fg. 4 : Using variables to calculate age.

"Calling" a variable to
be presented on a web
page is easy. Simply
use the document.
write() command.

19

Fundamental Concepts

The value for fullName is MartwanJenkins. To make sure that everything
is in its proper form, you need to include the empty space as a string in quotation
marks (fg. 6) :

var fullName = firstName+" "+lastName;

fg. 5 : Concatenating strings into a full name.

example (fg. 5) :

var firstName = "Martwan";
var lastName = "Jenkins";
var fullName = firstName+lastName;

document.write(fullName);

JAVASCRIPT QUICKSTART GUIDE

20

fg. 6 : Concatenating strings with spaces. fg. 7 : Concatenating a full sentence.

Operators are also useful when you want to join text
or combine variables. As a matter of fact, you can use this
to construct more logical sentences. For example (fg. 7),
you can combine the “My name is” text with a value from
a calculated variable.

var firstName = "Martwan";
var lastName = "Jenkins";
var fullName = firstName+"
"+lastName;
document.write("My name is "
+fullName);

Assignment Operators
Assignment operators are used to change variables within JavaScript. You are

already familiar with the fundamental assignment operator, the equal sign (=), which is
used to give an initial or a new value to a variable. Other assignment operators change
the value of a variable, but they do this in a slightly different way.

For example, as the year passes you grow older and your age incrementally changes
by one. To make this change in JavaScript, you can take several different approaches, all
with the same results (fg. 8).

When performing
several mathematical
operations in one
statement, the rules of
precedence apply.

21

Fundamental Concepts

fg. 8 : Changing variables with assignment operators.

To play around with the possibilities of changing variables, try the following code
that changes the value of the age variable displayed in the browser:

var age = 35;

document.write("<p>My age is "+age+"</p>");
age = age + 1;

document.write("<p>A year has passed, so now I am " +age+"</
p>");
age += 10;

document.write("<p>What? Are you telling me that I am a
grandad now? But I am only " +age+"</p>");

While at first these operations might appear slightly confusing, they are still
logical if viewed from the programming angle. For example, if you read the statement
age=age+1 backwards, the value of 1 is added to the current age of 35, which would
make 36 the new value of age. Additionally, you can use a complex assign operator

JAVASCRIPT QUICKSTART GUIDE

22

such as (+=) in the statement age+=10, to increase the value of the variable by 10.
You can also assign the same logic to other operations like subtraction, division and
multiplication.

age-=5; is the same as age = age - 5;

age*= 5; is the same as age = age * 5;

age/=5; is the same as age = age / 5;

Additionally, when you want to increase/decrease the value of the variable by 1,
you can also use the following assignment operators:

age++; is the same as age = age + 1;

age--; is the same as age = age - 1;

Comparison Operators
Like the name suggests comparison operators are used to compare two values.

After the comparison is made, a value of either true or false is returned depending on
whether the comparison was exact or not. Comparison operators are mostly used when
evaluation conditions in loops or conditional statements, discussed in the next chapter.

The following table summarizes the most common comparison operators.

OPERATOR MEANING EXAMPLE RETURN
VALUE

== equal to 4==4 True
> greater than 3>4 False
< less than 3<4 True
>= greater than or equal to 4>=4 True
<= less than or equal to 4<=5 True
!= not equal to 3!=4 True

23

Fundamental Concepts

Logical Operators
Logical operators allow you to compare two or more conditional statements. The

comparison lets you determine which statement is true so you can proceed accordingly.
Just like comparison operators, logical operators return a value of either true or false,
depending on the values on either side of the operator. The three most common logical
operators are AND, OR and NOT.

The AND operator is represented by the && code. The operator only returns a
true value when the statements on both sides of the && operator are true. If one or both
statements are false, the operator returns a false value. This is in agreement with the
rules of common language, for example, the statement “This jacket has all the American
colors, red, white and blue,” is only true if the jacket has red (true), white (true) and blue
(true). If only one of those colors is different (false), then the statement is also false. In
JavaScript syntax, this would look something like the following:

(color1 = "red" && color2 = "white" && color3 = "blue")

The OR operator is represented by the || code. It returns a true value if the
statement on one or both sides of the operator is true. The operator only returns a false
value if both statements are false. For example, the statement “My brother will either go
to Brazil or Thailand for his summer holiday” is true if my brother visited one (or maybe
both) of those places.

(destination1 = "Brazil" || destination2 = "Thailand")

The NOT operator, represented by the ! code, is used to “claim” that the opposite
statement is true. So, the operator returns a true value for any other condition than
what is explicitly stated. For example, the statement “Brian does not weight 200 pounds”
is true for any other value of weight except 200.

!(weight == 200)

You will learn the more practical aspects of logical operators in the next chapter,

JAVASCRIPT QUICKSTART GUIDE

24

which focuses on conditional statements and loops.

Arrays
The variables examined up until this point can remember only a single piece of

information at a time. However, more than often you need to keep track of multiple
values like the months of the year or a shopping list. In such a case, JavaScript provides
a nice way to remember multiple values under one variable, called an array. The
following array variable holds the first six months of the year.

var months = ["January", "February", "March", "April",
"May", "June"];

When declaring an array variable you first use the var keyword followed by the
name of the variable just like with regular variables. As the array contains multiple
items, you need to provide a value for each item between opening and closing square
brackets, []. Like with normal variables if the value of the item is a string, you must
place it within quotation marks. Otherwise, if the value is a number or possibly
another variable, don’t use any quotation characters. As an example, you can declare
the following array of random items:

var randomItems = ["ball", -0.5, "black pony", 333, true]

It is also possible to define an empty array. You use the same syntax, but leave out
the values for any item.

var hole = [];

Working with Array Items
Accessing array items is not the same as accessing common variables. Since an

array holds multiple values, it is not sufficient just to use the name of the array variable.
You also need to indicate its location within the array. The position of each item in an

25

Fundamental Concepts

array is indicated by a number called an index. Therefore, to access an array item you
have to use the array variable name and the index number. For example (fg. 9), if you
want to display the first and the last item from your months variable, use the array
name followed by a number enclosed in square brackets.

var months = ["January", "February", "March", "April",
"May", "June"];
document.write(months[0]);

document.write(months[5]);

You use the index position when you want to change the value of a specific array
item. For example, if in your months array you want to replace the name of the months
with their shorthand, you can change each variable with the following statements:

months[0] = "Jan";
months[1] = "Feb";
months[2] = "Mar";
months[3] = "Apr";
months[4] = "May";
months[5] = "Jun";

fg. 9 : Example for defining and displaying array results.

JavaScript numbers
each array item
automatically. The
index value for the
first item is always 0,
the index value for the
second item is always
2, and so on.

JAVASCRIPT QUICKSTART GUIDE

26

Managing Array Elements
If you know the index value of the last array item, you can simply add more items

by assigning values to subsequent items. For example, the following statement adds
one more item in the array under the index value of 6.

months[6] = "Jul";

However, while programming you are almost never required to actually remember
such trivialities as the last index value. Instead, to add one or more elements to the
end of an array, you can use the keyword push. To add the final five months to your
months array, combine the push keyword with the array name to form the following
statement:

months.push("Aug", "Sep", "Oct", "Nov", "Dec", "Jan");

Well, it seems that you went over and added an extra month. To remove the last
element of an array, use the pop keyword. As previously, you must combine the pop
keyword with the array name to form the following statement:

months.pop();

This statement deletes the last array element, "Jan", leaving you with an array
containing all the months of the year.

When you want to add an element to the beginning of an array instead of the
end, you can use the unshift keyword. Alternatively, when you want to remove an
element from the beginning of an array, you can use the shift keyword. The following
two statements add and subsequently remove a bogus first month to your array.

months.unshift("Sext");
months.shift();

If at any time you want to check the number of elements that are contained

27

Fundamental Concepts

within an array, you can initiate the length property for the months array, months.
length, and print it with the document.write statement.

To review all the different aspects you have learned, your complete code is (fg. 10):

var months = ["January", "February", "March", "April",
"May", "June"];
months[0] = "Jan";
months[1] = "Feb";
months[2] = "Mar";
months[3] = "Apr";
months[4] = "May";
months[5] = "Jun";
months.push("Aug", "Sep", "Oct", "Nov", "Dec", "Jan");
months.pop();

months.unshift("Sext");
months.shift();

document.write("The number of items in the array is: ",
months.length);

fg. 10 : Manipulating and displaying the array length.

JAVASCRIPT QUICKSTART GUIDE

28

Comments
From working with HTML and CSS you should already be familiar with

comments. Basically, commenting is a way to tell the browser to ignore segments of
the code. The purpose of comments is to leave notes about your code either for you
or whomever is going to read the code after you. As JavaScript can be more difficult
to understand when it is revised on a later date, commenting is even more important.

JavaScript recognizes two different approaches to commenting, marking a single
line as a comment and marking multiple lines as comments. Regardless of the approach,
the interpreter does not execute commented lines.

Single line comments are created with two forward slashes. When the interpreter
finds two forward slashes, it ignores everything that follows until the end of the line.

//this is a single line comment

It is also possible to write a line that is part code and part comment. In the
following example, after the variable year is declared, the rest of the line is treated as a
comment.

var year = 2015; //this is most likely the current year

When you need more than one line of comments, you can use an alternative
approach. Multiline comments in JavaScript are the same as multiline comments in
CSS. The comments have a beginning, initiated by a forward slash and an asterisk (/*),
and they have an end initiated by an asterisk and a forward slash (*/). The interpreter
always ignores anything between these opening and closing comment signifiers.

/*This is a comment that

is written in exactly

three lines */

29

Creating a variable and storing a value in the variable is not really an accomplishment,
neither is changing this variable with simple operators. To start making things
interesting, your programs must react to users’ actions and make them more intelligent.
You can do this using conditional statements and loops.

Conditional Statements
You make a myriad of choices during your everyday activities: “Should I get out of

bed?”, “What should I eat?”, “Where should I go for coffee?”. These choices depend on the
current situation, as the surrounding circumstances affect your decisions. In a similar
fashion, JavaScript also has decision-making capabilities called conditional statements.
Fundamentally, conditional statements are simple yes or no questions. If the answer
is yes, the program does one thing, and if the answer is no, the program either does
nothing or another thing.

The most basic conditional statement is the so-called if statement. This statement
executes a task only if the answer to the question is true. To understand the syntax of
an if statement, look at the following example:

var age = prompt("What is your age?"," ");
if (age > 30) {

document.write ("You are not so young anymore.");
}

The if statement consists of three parts. The if keyword indicates that what follows
is a conditional statement. The parentheses, (), contain the yes/no question, also
known as the condition. Finally, the curly braces, {}, contain one or more statements

Conditional & Loop Statements
chapter three

JAVASCRIPT QUICKSTART GUIDE

30

that need to be executed if the answer to the question is positive. Essentially, the { brace
marks the beginning and the } brace marks the end of the code that will be run if the
condition is fulfilled.

In the example above, the condition is a comparison between two values. With
the condition (age>30) you check whether the age variable has a value greater than
30. If the condition is true, then the statement to write the text within the brackets on
the web page is executed, otherwise, if false, the interpreter skips all of the statements
within the curly brackets.

Alternative Conditions
In real life when one condition fails there is always an alternative. If the restaurant

is out of cake, you can always order a fruit salad for dessert. Similarly, in JavaScript you
also want something to happen when the condition is true and when the condition
is false. To achieve this you can extend the if statement with an else clause. For
example (fg. 11) :

var age = prompt("What is your age?", " ");
if (age < 18) {

document.write("You can enter the web site.");
}

else {

document.write("You are too old to watch cartoons.");
}

In this example the user is asked to enter his or her age. Then the if statement
evaluates whether the value of the age variable is less than 18. If this is true, the text
“You can enter the website” is displayed on the page. If this condition is false, and the
user has entered a value that is equal to or greater than 18, then the else clause is
initiated and the text “You are too old to watch cartoons” is displayed on the web page.

31

Conditional & Loop Statements

To initiate an else
clause you simply add
it as a keyword after
the closing brace of the
conditional statement. The
statement(s) that you want
to execute are also placed
in braces {}, as you have
the option to add as many
lines of code as necessary.

fg. 11 : Using a conditional statement to respond to user input.

More often than not, there are more than two possible outcomes to a situation.
When this is the case, JavaScript lets you use cascading else if statements to
offer solutions to multiple alternatives. Start with an if statement for the first option,
and then add one or more else if statements to trigger additional options. Like
previously, the else clause is used in the end as the last alternative (fg. 12).

var money = prompt("How much money do you have in your
pocket?", " ");
if (money < 20) {

document.write("That is not enough. Go to the ATM to get
some more.");
}

else if (money == 20) {

document.write("Exactly 20? That’s great, buy me a nice
burger meal.");}
else {

document.write("You shouldn’t carry so much money around.
Give some to me.");
}

JAVASCRIPT QUICKSTART GUIDE

32

fg. 12 : Using alternative
conditional statements.

In this example, the
user is asked to enter the
amount of money he or
she possesses. Afterwards,
the JavaScript program
assesses the answer and
replies with one of three
available responses based
on the entered amount.

Multiple Conditions
When dealing with different variables you need to form more complex conditional

statements. For example (fg. 13), if you are having a private bachelorette party, you
must make sure that you don’t let people in unless they are female and over 18. Using
the logical operators from the previous chapter and the else if conditional statements,
you can build more intricate comparisons.

var gender = prompt("What is your gender?"," ");
var age = prompt("How old are you?"," ");
if ((gender == "female") && (age >= 18)) {
document.write("Please enter. Hope you brought a nice
gift.");}
else if (gender == "male") {
document.write("This is a bachelorette party. No guys
allowed.");
}

else {

document.write("You are probably too young to enter. Come
back in a few years.");
}

33

Conditional & Loop Statements

fg. 13 : Checking for multiple conditions.

In this example you
are making decisions
based on two factors,
gender and age. A positive
decision is only available
when both conditions
are true: the person is a
female over 18 years of
age. In JavaScript, you
combine conditions using
logical operators, which
in this case is the AND
operator represented by double ampersands (&&). When using this operator between
two conditions within a single conditional statement, you summarize the outcome into
only one condition.

Loop Statements
Some daily tasks are repetitive. To wash the dishes, you have to wash each dish

separately. To climb down the stairs you have to step down one stair at a time. At the
checkout counter, you have to take each item out of the cart, scan it and put it back in
a bag. Well, in programming repetitive tasks are very easy to do. As a matter of fact,
JavaScript is very good at performing repetitive tasks, as it has all the necessary tools to
do the same thing over and over again. In programming lingo, repeatedly performing
the same task is called a loop.

There are several different types of loops. They essentially do the same thing, but
the approach is slightly different. This section familiarizes you with while loops and
for loops.

JAVASCRIPT QUICKSTART GUIDE

34

While Loops
In a while loop, the same code is repeated as long as a certain condition is true.

The following example checks your age as you grow every year.

var age = 1;

while (age < 18) {

 document.write("Another year has passed. You are
now "+age+" years old.
");
 age = age + 1;

}

document.write(age+"? Congratulations! You are now an
adult.");

After declaring the age variable, this example introduces a while statement.
Following the while keyword, you place a condition between parentheses, which in
this case is age<18. If the condition is true, the JavaScript interpreter runs the code
that appears between the braces. Unlike a conditional statement, when the closing
brace of the while statement is reached, JavaScript does not continue with the rest of
the program but instead initiates the while statement again. As long as the number
stored in the age variable is less than 18, the script runs the document.write()
command.

When the condition is false, the interpreter ‘exits’ the loop and continues parsing
the rest of the code. This makes the last line of the while loop very important. It not
only changes the value of the condition variable, but it also makes it possible for the test
condition to eventually be false. Without this possibility, you ‘lock’ the interpreter into
performing the same task over and over again... forever. This is known as an infinite
loop, which is essentially a loop that never completes. An infinite loop runs either
until it crashes the computer or it receives a timeout from a modern interpreter after a
certain period of time.

For Loops
In JavaScript there is a second option for creating a loop statement that is

35

Conditional & Loop Statements

more compact and slightly more confusing. For loops can achieve the same thing as
while loops with fewer lines of code, but the code is a bit unintuitive for the novice
programmer. In a for loop, the variable declaration, the condition and the changing
value of the variable are all done at the same time. In the following example (fg. 14),
the previous age-growing while loop is written with a for loop syntax.

for (var age = 1; age < 18; age++) {

 document.write("Another year has passed. You are
now "+age+" years old.
");
}

document.write(age+"? Congratulations! You are now an
adult.");

fg. 14 : An example of a for loop.

JAVASCRIPT QUICKSTART GUIDE

36

As evident from the image, the resulting content is exactly the same in both cases.
Each loop begins with the for keyword. This is then followed by a set of parentheses
that contains three parts:

1. The first part, which is applied only once at the beginning of the statement,
declares the condition variable, age, and sets its initial value to 1. The initial
value is used as a starting point for the number of times the loop repeats and
can be any number. If this variable had been initialized earlier in the script,
the var keyword would have been unnecessary.

2. The second part is the condition itself, which is evaluated every time before
the loop is executed. As long as the condition is true, the for statement keeps
repeating the code. When the condition is false, the loop is instructed to stop
running, which in this example is when the age variable becomes greater
than or equal to 18.

3. Finally, the third part determines the rate at which the condition variable is
changed. In the example the condition variable increases by one after each
cycle, but this is not mandatory. The condition variable can get larger or
smaller and can increase or decrease by any amount you set.

To finish the structure of the for loop you use curly brackets to enclose the code
that you want to use within the loop, which in the example is a line of text that is
written on the web page with document.write().

Loops & Arrays
Loop statements are very useful when you want do handle array variables. In

JavaScript, you can use loops to cycle through array items, and when necessary, perform
an action on each item.

Earlier in this book you created an array called months that contained the twelve
months of the year.

37

Conditional & Loop Statements

var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];

Using either a while or a for loop you can go through each item in the array
and print it to the page. You can access the array items by using their indexes, then
subsequently increase the index value in each loop cycle. If you use a while statement,
you create the following code:

var counter = 0;

while (counter < months.length) {

 document.write(months[counter] + " ");
 counter++;

}

First, initiate a counter variable that has the same starting value as the index of
the first array item, which is 0. Then, begin a while loop that runs until the counter
value is less than the length of the array. The condition, counter < months.
length inquires whether the current value of the counter variable is lower than
the number of array items by comparing it to the array’s length property. Each time the
while loop runs, you print the value of a single array item and subsequently increase the
value of the counter variable by 1.

If you want to perform the same action with a for loop you can use the following
code (fg. 15):

var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];
for (var counter = 0; counter < months.length; counter++)

{

 document.write(months[counter] + " ");
}

JAVASCRIPT QUICKSTART GUIDE

38

fg. 15 : Displaying array contents using loops.

39

When writing JavaScript code you are actually writing detailed instructions for what
you want to happen one step at a time. In real life, you only need detailed instructions
for the first time you perform the action. Afterwards you familiarize yourself with the
steps and do the actions automatically. For example, remember the first time you used
a touchscreen smartphone? To turn on the phone you had to perform two unknown
actions: click a button to initiate the screen and swipe across the screen to unlock the
phone. For each subsequent time you turned your phone on, you didn’t need these
instructions; you had already committed them to memory.

JavaScript has a similar mechanism that memorizes steps of a frequently used
action, and this mechanism is called a function. A function is a series of steps you
create in the beginning of your script in order to use it whenever you need those steps
performed. You write the code only once and you run it whenever you need to.

This chapter explains the fundamentals behind using functions. You will learn
what a function is, how to define and structure functions, and how to call functions in
your scripts.

Creating Functions
The main purpose of a function is to perform a series of actions through a single

command. The actual task that the function performs depends on the code itself. It
can be something as simple as writing a single line of text in the browser or complex
calculations that evaluate the final price of a shopping basket including discounts
and shipping methods. Except for making your scripts more portable, functions are
useful because they are reusable. Rather than rewriting blocks of code, you can use
the function as many times as necessary. This becomes especially helpful when the
functions are lengthy and perform complex tasks.

Functions
chapter FOUR

JAVASCRIPT QUICKSTART GUIDE

40

To define a basic function in JavaScript it is necessary to declare it with its
name and code. The name of the function should indicate what the function does.
The following example uses the keyword function followed by the function name
writeText and a set of parentheses to declare a function:

function writeText() {

 document.write("The answer is 42.");
}

By using the keyword function you inform the interpreter that what follows
is a series of steps that need to be remembered. The steps are listed between two curly
braces, which mark the beginning and the end of the JavaScript code that is meant to
be the function. In the example above, the steps are remembered as the name of the
function, which is writeText. Hence, whenever you want to initiate this sequence of
steps it is sufficient to only write out the function name followed by empty parentheses.
This is also known as calling a function.

writeText();

In this basic example, every time you call the function within the main script, the
text “The answer is 42.” is written on the web page. You can modify a previous script and
create a function that checks the age of the user for a more precise example.

function checkAge() {

 if (age >= 18) {

document.write("You have reached the age of wisdom, please
enter and have some fun.");
 }

 else {

document.write("Please come back in a few years.");
 }

}

41

Functions

The JavaScript code that is placed in a function is stored in the browser’s memory,
waiting for you to call the function whenever you need to perform that specific action.
In this example, the function checks how the age variable relates to the value of 18. As
mentioned previously, to call the function you simply need to write out the name of the
function followed by a pair of parentheses. You can also try adding a prompt() that
asks the user to provide his or her age.

var age = prompt("How old are you?");
checkAge();

The complete script would be (fg. 16):

function checkAge() {

 if (age >= 18) {

 document.write("You have reached the age of wisdom,
please enter and have some fun.");
 }

 else {

 document.write("Please come back in a few years.");
 }

}

var age = prompt("How old are you?");
checkAge();

Additionally, you can use what you learned in previous chapters to make this
function more intelligent. Instead of just receiving the answer “Please come back in a few
years,” you can calculate the actual difference between 18 and the age the user entered.

To do this you introduce a variable named difference in the function, then
calculate that difference as 18-age if the entered value for age is less than 18, and
finally print the difference variable along with the text.

JAVASCRIPT QUICKSTART GUIDE

42

fg. 16 : Implementing a function to check the user’s age.

fg. 17 : Smart check age.

43

Functions

Adding this would look like the following (fg. 17):

function checkAge() {

 var difference;

 if (age >= 18) {

 document.write("You have reached the age of wisdom,
please enter and have some fun.");
 }

 else {

 difference = 18 - age;

 document.write("Please come back in "+difference+"
years.");
 }

}

var age = prompt("How old are you?"," ");
checkAge();

Sending Information to Functions
You can send one or more values to the function, thus increasing its versatility.

When you send these values, the function is capable of processing this information
before it comes back with an answer. The values you send are also known as arguments,
while the process of sending information to a function is called ‘passing an argument.’
Once the argument is received, the function uses this data while carrying out the
sequence of actions as specified in the code.

The basic syntax would look like this:

function functionName(argument) {

 //JavaScript code

}

Arguments are set on the first line of the function inside the set of parentheses,

JAVASCRIPT QUICKSTART GUIDE

44

This function, named
print(), can accept
one argument. When
the function is called,
this argument is passed
on to the function and is
stored as a variable named
message. When the
document.write()
command is initiated
within the function, it
writes the contents of the

message variable on the page. As mentioned previously, functions are not limited to
processing single arguments. We can pass as many arguments to the function as needed
as long as each argument is specified in the function and the function is called with the
same number of arguments in the same order.

which you previously left blank. The values brought in as arguments automatically
become declared variables within the function. These variables use the names given
inside the parentheses and do not need to be further declared with the var keyword.

As the most basic example, the code below creates a function that shortens the
syntax of the document.write() command (fg. 18).

function print(message) {

 document.write(message);

}

print("<p>What are you doing? document.write is a perfect
command.</p>");
print("<p>42 is the answer, but what is the question?</
p>");

fg. 18 : Implementing a function to check the user’s age.

45

Functions

The following example (fg. 19) revisits the checkAge() function and makes it
more versatile. It introduces the variables name and years to the function and has it
respond with a personalized message.

function checkAge(name, years) {

if (years < 18) {

 document.write(name+" you are too young to
enter.
");
}

else {

 document.write(name+" you are above 18. Please come
in.
");
}

}

checkAge("Jack", 80);
checkAge("Alicia", 8);
checkAge("Simonetta", 15);
checkAge("Geronimo", 30);

fg. 19 : Checking the ages for multiple users with a single function.

JAVASCRIPT QUICKSTART GUIDE

46

The previous example initiates the checkAge()
function several times, each time with two different
values, one for name and another for age. The first
argument is stored as the name variable, and the
second value is stored as the years variable. In the
future, the years variable is used in a conditional
statement to evaluate whether it is less than or greater
than 18. Correspondingly, the name variable is used
in the personalized message displayed through the
document.write() command. To separate lines,
you end each personalized message with a
 tag.

Retrieving Information from Functions
Now that you have seen how to send information, you can “push” functions even

further and get information back from them. To retrieve a value from the function to
the main script you can use the return statement. The generic syntax looks like this:

function functionName(argument1, argument2) {

// JavaScript code

return data;}

For a more specific example assume that you want to learn the price of a product
after a discount (fg. 20).

function checkPrice(price, discount) {

 var total = price - price * discount / 100;

 return total;

}

var actualprice = checkPrice(100, 20);

document.write("The discounted price of the product

excluding VAT is "+actualprice)20

You can send any type
of JavaScript variable
or value to a function:
string, number,
boolean, array, etc.

47

Functions

The checkPrice
function accepts two
values as arguments, the
price of the product and
the discount that needs
to be applied. Once
these valued are accepted
they are stored in the
price and discount
variables respectively. The
function then calculates
the discounted price and

assigns this calculated value to the variable total. The mathematical formula price-
price*discount/100 is just the formula used to make this calculation. Finally,
the value for the variable total is returned to the main script with the return
statement. What is passed down to the script is the value of the total variable, not
the variable itself. In order to use this ‘returned’ value in the script, you need to store it
inside a variable. The above example calls the checkPrice() function to calculate a
20% discount to a price of $100 and assigns the resulting value to the actualprice
variable. This variable is then used in the main script and can be displayed on screen
with the document.write() command.

You are not required to store the return value in a variable. You can also use it
directly in the document.write() command.

document.write("The discounted price of the product
excluding VAT is "+checkPrice(100, 20));

Be aware that as soon as the browser’s JavaScript interpreter encounters a return
statement, it exits the function. This means that if there are any lines of code after the
return statement, they will not be executed. Therefore, the return statement should be
the last line of code within the function.

fg. 20 : Implementing a function to check the user’s age.

JAVASCRIPT QUICKSTART GUIDE

48

Local & Global Variables
For the JavaScript interpreter, the variables declared inside of a function are

treated differently than variables declared outside of a function. The so-called ‘scope’
of the variables is different in each situation. The variables that exist inside a function
are not visible to the rest of the script. They are valid only for the function itself. This
means that function variables have a local scope. On the other hand, variables that
are declared in the main part of the JavaScript code are meaningful to all parts of the
script. This means that all existing functions in a script can access the variables that are
created in its main body. These variables have a global scope.

To clarify the difference here are a few examples that calculate the number of
drinks you have during a fun night out (fg. 21).

var drinks = 0;

function nightOut() {

 drinks = 5;

 document.write("Drinks in the function ", +drinks);
}

document.write("Drinks on the outside ", +drinks);

As you begin the day
with 0 drinks, the variable
drinks is declared in the
main body of the JavaScript
code with the assigned
value of 0. As the drinks
variable is declared in the
main code, it has global
scope, meaning that it
is accessible to all other
functions. For this reason,
when you display this

variable with the document.write statement both in the function and in the main

fg. 21 : Local vs. global variables example.

49

Functions

code, you get the assigned value of 5.
Now, assume that you want to track the number of drinks at each place you visit

with the following code (fg. 22):

var drinks=0;

var bardrinks = 0;

var clubdrinks = 0;

function nightOut() {

 var bardrinks = 3;

 var clubdrinks = 5;

 var drinks = bardrinks + clubdrinks;

 document.write("<p>Bar drinks in the function ",
+bardrinks);

 document.write("<p>Club drinks in the function ",
+clubdrinks);

 document.write("<p>Drinks in the function ",
+drinks);

}

nightOut();

document.write("<p>Bar drinks on the outside ",
+bardrinks);

document.write("<p>Club drinks on the outside ",
+clubdrinks);

document.write("<p>Drinks on the outside ", +drinks);

As in the previous example, the variable drinks is declared in the main body
of the script, and, therefore, it has a global scope. However, this variation (fg. 22) also
declares two additional variables, bardrinks and clubdrinks, within the function.
These two variables have a local scope and can be accessed only in the function itself.
Hence, when you display these variables with the document.write() statement
within the function you see values, while when you display these variables in the main
code you don’t see any values.

JAVASCRIPT QUICKSTART GUIDE

50

fg. 22 : Local vs. global variables extended example.

51

The real world is filled with objects, like cars, TVs, and dolls. Most of these objects are
made up of many different parts and can also do one or more actions. The programming
world, specifically JavaScript, is also full of objects.

This chapter takes your JavaScript knowledge to the next level and looks at the
more advanced concepts starting with objects and object-oriented programming.
Understanding these concepts will provide you with a vital set of tools that you can
even apply when learning other programming languages.

What Are Objects?
To represent physical things and concepts in the programming world you need to

use objects. But before you use programming objects, consider an object from the real
world, for instance a car. If you want to describe a car, you talk about its characteristics
such as color, make and model. You might expand your description to number of
doors, seats, engine type,
maximum speed or any
other set of characteristics.
You can also talk about
how you use the car, from
turning the ignition key to
driving or listening to the
stereo, or even how you use parts of the car, like reclining the seats. You can even
compare different car “versions” based on this outline.

In programming, the car is described as an object. The characteristics of the car
such as color, make, model, are defined as the properties of the car object. The things
you can do with the car, like driving or listening to music, are represented by what is

Objects
chapter Five

fg. 23 : Two identical cars.

JAVASCRIPT QUICKSTART GUIDE

52

known as methods. And finally, each actual representation of a car is called an instance.
For example, in the previous image (fg. 23) you are looking at two instances of a car.

Creating Objects
There are two approaches to creating objects in JavaScript, you can either use

an object constructor function or a literal notation. Start with an object constructor
example:

var car = new Object ();

The first part of this statement is familiar; you use the var keyword to define a
car variable. As you want to define the variable as an object, you use the new operator
followed by the Object() constructor. This instructs JavaScript to create an empty
object and assign it the name car.

Once the empty object has been created you can start defining its properties. Each
property has a name and a value, with each name/value pair describing a particular
instance of the object. For your car object you can assign the properties color, make
and model.

var car = new Object();

car.color = "red";
car.make = "Ford";
car.model = "Mustang";

Notice that when defining properties you use the object name, followed by a dot,
followed by the property name. This is known as dot syntax, in which the dot connects
the property (or method) to the object.

53

Objects

To define a method for the object, you need to create a function that becomes a
part of the object. To begin, create a simple method that displays a notification that the
car has been turned on.

car.startCar = function () {

 document.write("The engine has started.
");
}

As you are familiar with functions, you can see that the startCar method is
created with the function keyword, followed by a series of statements placed within
curly braces. Since this code only creates the method, in order to see this method in
action you have to call it in the script using the object name.

car.startCar();

The complete code would be (fg. 23):

var car=new Object();

car.color = "red";
car.make = "Ford";
car.model= "Mustang";
car.startCar = function () {

 document.write("The engine has started.
");
document.write("You are driving a "+car.color+" "+car.
make+" "+car.model);
}

car.startCar();

JAVASCRIPT QUICKSTART GUIDE

54

fg. 24 : Defining a car object.

fg. 25 : Changing the properties of an object.

You can always
distinguish a method
from a property by the
parentheses. A method
name always ends in
parentheses.

If you can use a function to create something, you can use a method, too, which
means you can create anything you can imagine. You can even use a method to change
the properties of the object itself. The following example creates a method that changes
the color of the car.

car.changeColor = function (othercolor) {

 this.color = othercolor;

 document.write("The car is now "+this.color);}

55

Objects

Notice two differences from the previous method: you are passing an argument to
the method using a new keyword, this. The keyword this refers to the object itself
and allows you to assign new property values or even create new properties at the same
time. The complete code is (fg. 25):

var car = new Object();

car.color = "red";

car.make = "Ford";

car.model = "Mustang";

car.startCar = function () {

 document.write("The engine has started.
");

 document.write("You are driving a "+car.color+"

"+car.make+" "+car.model);

}

car.changeColor = function (othercolor) {

 this.color = othercolor;

 document.write("<p>The car is now "+this.color);

}

car.startCar();

document.write("<p>The current color of the car is "+car.

color+ "
");

car.changeColor("green");

Another way to create objects in JavaScript is with object literal notation. With
this approach you use curly brackets to enclose the properties and methods for the
object.

JAVASCRIPT QUICKSTART GUIDE

56

The following code reproduces the car object with literal notation:

var car = {

color: "red",
make: "Ford",
model: "Mustang",
startCar: function () {

 document.write("The engine has started.
");
 },

changeColor: function (othercolor) {

 this.color = othercolor;

 document.write("The car is now "+this.color);
 }

}

From the example it is noticeable that in literal notation each name/value pair is
separated by a colon, including the method function. You can have as many name/value
pairs as necessary as long as each pair is separated with a comma.

Unknowingly, you have been using JavaScript objects in your statements. For
example, your most frequently used statement in all the examples is the document.
write() statement. As a matter of fact in using this statement you have actually been
addressing the document object and telling it to execute the write() method. You
will learn more about the document object in the next chapter.

57

In the previous chapter you learned how objects work and even looked at some of
JavaScript’s predefined objects. You are now prepared to investigate the most important
web object, which is the document object. The document object primarily helps you
gather information about the web page.

The browser creates the document object for each new HTML page. When it
is created, JavaScript allows you access to a number of properties and methods of this
object that can affect the document in various ways, such as managing or changing
information. As a matter of fact you have been continuously using a method of this
object, document.write(), in order to display content in a web page. Nevertheless,
before exploring properties and methods you must first take a look at the Document
Object Model (DOM).

Fundamental DOM Concepts
When the web browser receives an HTML file it displays it as a web page on

the screen with all of the accompanying files like images and CSS styles. Nevertheless,
the browser also creates a model of that web document based on its HTML structure.
This means that all the tags, their attributes and the order in which they appear are
remembered by the browser. This representation is called the Document Object Model
(DOM), and it is used to provide information to JavaScript about how to communicate
with the web page elements. Additionally, the DOM provides tools that can be used to
navigate or modify the HTML code.

The World Wide Web Consortium (W3C) defined the Document Object Model
standard that most browser developers use.

Document Object Model
chapter six

JAVASCRIPT QUICKSTART GUIDE

58

To better understand the DOM, first take a look at a very simple web page:

<!doctype html>

<html>

<head>

<meta charset="utf-8">
<title>Party Schedule</title>

<style type="text/css">
.current {

 color:red;

}

.finished {

 color:green;

}

</style>

</head>

<body>

<h1 id="partytitle">Party Plan</h1>
<ul id="partyplan">
 <li id="phase1">20:00 - Home warm-up
 <li id="phase2">22:00 - Joe’s Bar
 <li id="phase3">00:00 - Nightclub 54

</body>

</html>

On a web page, tags wrap around other tags. The <html> tag wraps around the
<head> and <body> tags. The <head> tag wraps around tags such as <title>,
<meta> and <script>. The <body> tag wraps around all content tags such as
<p>, <h1> through <h6>, , <table> and so on.

This relationship between tags can be represented with a tree structure in which
the <html> tag acts as the root of the tree while other tags represent different tree

59

Document Object Model

branch structures dependent on the tag hierarchy within the document. In addition
to tags, a web browser also memorizes the attributes of the tag as well as the textual
content within the tag. In the DOM each of these items, tags, attributes and text are
treated as individual units called nodes.

In the tree structure for this basic HTML page, the <html> element acts as a
root element, while the <head> and <body> elements are nodes. In defining this
relationship you can also refer to <html> as the parent node, and the <head> and
<body> elements as child notes. In turn, both the <head> and <body> elements
contain child nodes and so on. An item that contains no other child node terminates
the tree structure at that node, which also known as a leaf node.

Selecting Document Elements
With the DOM structure in place, JavaScript can access the elements within the

document in several different ways, depending on whether you want to select individual
or multiple elements. In all approaches you first have to locate the node representing
the element you need to access and subsequently use the content, child elements and
attributes of that node.

Selecting Individual Elements
To select individual elements you most commonly use the getElementById()

fg. 26 : Tree structure of an HTML document.

JAVASCRIPT QUICKSTART GUIDE

60

method. This method lets you select an element with a particular ID attribute applied
to its HTML tag. This method is the most efficient way to access an element if you
follow the presumption that the ID attribute is unique for every element within the
page. The following example accesses the element whose ID attribute has the value
"phase1" :

var firststop = document.getElementById("phase1");

Using the getElementById() method on the document object means that you
are searching for the element with this ID anywhere on the page. Once the "phase1"
element is assessed, which in your case is the first <h1> element, the reference to this
node is stored in the firststop variable, and you can use JavaScript to make changes.
The following example (fg. 27) assigns the attribute class with the value "current"
to this element. You can include this code in a <script> tag in the <head> section.

var firststop = document.getElementById("phase1");
firststop.className = "current";

fg. 27 : Changing the style of a page element.

For the code in this
chapter to work,
in some browsers you
have to either put the
<script> tag before
the closing </body>
tag or in an external
.js file.

61

Document Object Model

If you want to collect the text from a node, you can use the textContent
property. More importantly, you can also use the textContent property to change
the content of the node. In the following example (fg. 28) you first select the element
that has the value "partytitle" in its id attribute and assign it to the title variable.
Then you effectively change the text of this element by changing the textContent
property of the title variable.

var title = document.getElementById("partytitle");
title.textContent = "Party Schedule";

Selecting Group Elements
While sometimes selecting an individual element is sufficient, other times you

may need to select a group of elements.
For example, you may need to select all tags on a page or all elements that

share a class attribute.

fg. 28 : Changing the content of a page element.

JAVASCRIPT QUICKSTART GUIDE

62

In these cases JavaScript offers the following two methods:

1. getElementsByTagName() : a method that lets you select every instance of a
particular tag.

2. getElementsByClassName() : a method that retrieves all elements that share a
particular class name.

Selecting a group of elements means that the method returns more than one
node. This collection of nodes is known as a NodeList and is stored in an array-like
item. Each node is given an index number, starting with 0, while the order of the nodes
are in the same order in which they appear on the page. Although NodeLists look like
arrays and behave like arrays, semantically they are a type of object called a collection.
As an object, a collection has its own properties and methods that are rather useful
when dealing with a NodeList. The following example selects all elements and
assigns their node references to the schedule variable.

var schedule = document.getElementsByTagName("li");

If you want to access each element separately, you can use an array syntax:

var item1 = schedule[0];

var item2 = schedule[1];

var item3 = schedule[2];

However, when you select a group of items, you usually want to interact with the
whole group. As an example (fg. 29), assign the class attribute with the "finished"
value to all elements. For this purpose you can use a loop to go through each
element in the NodeList.

var schedule = document.getElementsByTagName("li");
for (var i = 0; i < schedule.length; i++) {

 schedule[i].className = "finished";}

63

Document Object Model

fg. 29 : Changing the class attribute for all elements.

Similar to working with arrays, when working with collections you can use
the length property to determine the size of the collection. You can then use this
information in a for loop in order to effectively go through every NodeList item and
assign the "finished" class attribute.

You can use exactly the same logic for the getElementsByClassName()
method, which stores a NodeList in a collection and gives each node an index number.
As with the getElementByTagName() method, you can access individual items
and manage the collection through its object properties and methods.

Traveling Through the DOM
When you use any of the previously discussed methods to select an element node,

you can also select other elements in relation to this element. This type of relative
selection is considered an element property.

previousSibling & nextSibling
The previousSibling and nextSibling properties refer to adjacent

JAVASCRIPT QUICKSTART GUIDE

64

elements on the same DOM level. For example, if you select the second
element with the id value "phase2", the "phase1" element is considered
a previousSibling, while the "phase3" element is nextSibling.
In the case in which there is no sibling, (ex. the "phase1" element has no
previousSibling), the value of this property remains null.

The following example selects the element, which has "phase2" as a value
for its id attribute, and changes the class attribute for both the selected element and
its previous sibling.

var secondstop = document.getElementById("phase2");
var prevstop=secondstop.previousSibling;

secondstop.className = "current";
prevstop.className = "finished";

Parents & Children
You can also travel to different levels of the DOM hierarchy using the selected

element as a starting point. If you want to move one level up, you can use the
parentNode property. For example, if you have the second element selected
you can refer to its parent element, the element, with the following syntax:

var secondstop = document.getElementById("phase2");
var upperelement = secondstop.parentNode;

Alternatively, if you want to move one level down, you can use either the
firstChild or the lastChild property. The following example selects the
element with "partyplan" as a value for its id attribute. Using the firstChild
property it refers to the first element of this list, while with the lastChild
property it refers to the last element of this list.

var plan = document.getElementById("partyplan");
var child1 = plan.firstChild;

var child2 = plan.lastChild;

65

Document Object Model

Adding & Managing Content
So far, this chapter has discussed how to find elements in the DOM. The more

interesting aspects are the approaches to managing content within the DOM.

Changing HTML
The textContent property retrieves only text values and ignores the

subsequent HTML structure. If you want to edit the page HTML, you have to use the
innerHTML property. This property can be used on any element node and is capable
of both retrieving and editing content.

var liContent = document.getElementById("phase1").
innerHTML;

When retrieving the
HTML from the
element with "phase1" as
a value for its id attribute,
innerHTML captures
the whole content of the
element, text and markup,
as a string variable. If you
apply the same syntax for
the element, the
innerHTML property
will capture all of the
 items. You can also use the innerHTML property to change the content of
the element. If this content contains additional markup, these new elements will be
processed and added to the DOM tree. For example (fg. 30), add the tag to the
first item in the party list:

var firstStop = document.getElementById("phase1");
firstStop.innerHTML = "20:00 - Home warm-up";

fg. 30 : Adding an element with content to the first list item.

JAVASCRIPT QUICKSTART GUIDE

66

DOM Manipulation
DOM manipulation is a more direct technique to managing document content.

This is a 3-step process that uses the following methods:

1. createElement() : Create a new element node with the createElement()
method. This element node is stored in a variable and it is not yet a part of
the DOM.

2. createTextNode() : Create a new text node with the createTextNode()
method. As in the previous step, this text node is stored in a variable and is
not a part of the document.

3. appendChild() : Add the created element to the DOM tree with the
appendChild() method. The element is added as a child to an existing
element. This method can be used to add the text node to the element node.

This example creates a new element that you can add to the existing party list. Use
the createElement() method and add this element to the newPlan variable.

var newPlan = document.createElement("li");

Following, create a new text node and add its content as a value to the
newPlanText variable.

var newPlanText = document.createTextNode("04:00 - Back
to home");

Now assign the content of the text node to the newPlan element using the
appendChild() method.

newPlan.appendChild(newPlanText);

Finally, add this element to the list. Use the getElementById() method to
select the list through its "partyplan" id, and apply the appendChild() method

67

Document Object Model

to attach the newPlan element to the list.

document.getElementById("partyplan").
appendChild(newPlan);

The complete syntax is as follows (fg. 31):

var newPlan = document.createElement("li");
var newPlanText = document.createTextNode("04:00 - Back
to home");
newPlan.appendChild(newPlanText);

document.getElementById("partyplan").
appendChild(newPlan);

fg. 31 : Adding a new element.

Using a similar process you can also use DOM manipulation to remove an
element from the page. As an example, remove the <h1> element, which acts as the
main page heading. You must first select the element through its id attribute with

JAVASCRIPT QUICKSTART GUIDE

68

"partytitle" as its value and store that element node in a variable.

var removeHeading = document.getElementById("partytitle");

Next, you need to find the parent element, which acts as a container for the <h1>
element, which in this case is the <body> element. You can either select this element
directly or use the parentNode property of the previously selected element. In either
case you need to store the parent element in another variable.

var containerForHeading = removeHeading.parendNode;

Finally, use the removeChild() method on the parent element in order to
discard the element that you want removed from the page.

containerForHeading.removeChild(removeHeading);

The complete syntax is as follows (fg. 32):

var removeHeading = document.getElementById("partytitle");
var containerForHeading = removeHeading.parentNode;

containerForHeading.removeChild(removeHeading);

fg. 32 : Removed heading.

69

One of the most important concepts in JavaScript is the use of events. An event is simply
something that happens, like pressing a key on the keyboard or clicking somewhere on
the page. As long as something happens and it has been expected, you can respond to
it with a specific action. You can intercept the anticipated event and respond in kind by
calling a function when that event occurs. As you will see in this final chapter, to make
JavaScript anticipate events you use event handlers or event listeners.

Event Types
When you interact with web pages, you initiate a lot of events. You click a link,

hover over an element, type text, open the browser, close a tab, copy/paste text, fill-out
forms and so on. Almost everything you do triggers an event, and when an event is
triggered you usually want to code a function that reacts specifically to that event.

There are many types of events to which you we can react, but you only need to
focus on mouse events, keyboard events and browser/object events. The following three
tables give brief descriptions of the most commonly used events for each event type.

Mouse events occur when the user does something with the mouse like moving,
clicking, and dragging.

EVENT DESCRIPTION

onclick The user clicks an element
onbdlclick The user double clicks an element

onmouseover The user positions the mouse pointer on a specific element
onmouseout The user moves the mouse pointer away from a specific element
ondrag The user clicks and drags an element

Events
chapter seven

JAVASCRIPT QUICKSTART GUIDE

70

Keyboard events occur either when a key is pressed or depressed.

EVENT DESCRIPTION

onkeydown The user is pressing a key
onkeyup The user has released a pressed key

Browser/object events are more generic events that occur at different times like
when the web page is loaded.

EVENT DESCRIPTION

onload The page/object has loaded
onunload The page/object has unladed
onfocus The page/element gets focus
onblur The page/element loses focus
onerror An error has occurred on the page
onresize The page/object is resized
onscroll The scrollbar of the page/object is used

The full list of possible events is rather large and
beyond the scope of this book. Please visit the W3C
Schools web site for a complete list: (http://www.
w3schools.com/jsref/dom_obj_event.asp).

Mouse events are the most common user-based events that occur on a web page.
However, with the advent of touch-based devices there is an increased consideration
for touch events.

71

Events

Reacting to Events
In order to program JavaScript to react to an event you have to bind that event to

an element on the page via event handlers. Event handlers let you indicate the event
for which you are listening on any specific element. For this purpose there are three
different approaches to event handlers:

1. HTML event handlers are attributes that can respond to events on the
element to which they are added. Although still present in older web pages,
this approach is no longer used as it integrates JavaScript into HTML when
it should separate them.

2. DOM event handlers are introduced in the original DOM specification. They
are separate from the HTML document and have a strong support in all
major browsers. Their main drawback is the limitation of attaching only a
single function to an event.

3. DOM event listeners are the favored approach to handling events and were
introduced in an update of the DOM specification. They allow one event
to trigger multiple functions, but they are not supported by IE8 and earlier
versions of that browser.

When dealing with events you first have to select the element that will be the
object of interaction. If for example this element is a link, then you need to specify the
DOM node for that link element. After you have the element selected, you need to
indicate the event that will act as a trigger. In programmer speak this is called “binding
the event to the element node.” Finally, you have to state the code, which is usually a
function that you want to trigger when the event happens.

JAVASCRIPT QUICKSTART GUIDE

72

The remainder of the chapter focuses on event handlers and event listeners and
ignores the discarded HTML approach. The examples in this chapter use a similar
HTML structure like in the Party Schedule example from the previous chapter. The
only difference is the link elements that have been added to every list item.

<!doctype html>

<html>

<head>

<meta charset="utf-8">
<title>Party Schedule</title>

<style type="text/css">
.current {

 color:red;

}

.finished {

 color:green;

}

</style>

</head>

<body>

<h1 id="partytitle">Party Plan</h1>
<ul id="partyplan">
 <li id="phase1">20:00 - Home
warm-up

 <li id="phase2">22:00 - Joe’s Bar
 <li id="phase3">00:00 - Nightclub 54

</body>

</html>

Event Handlers
There are many very similar approaches to using traditional DOM event handlers.

73

Events

Some are very compact, while others have more lines of code but might be more
understandable. The following example is a brief script that changes the color of the
link once it is clicked. To begin, first create the function that you want to trigger when
the event occurs.

function linkClick(){

 this.className = "current";
}

The this.className property instructs the object calling on this function
to set its className property to "current". Now that you have your function in
place, call on the object that will trigger the event using the getElementById()
method and assign its element node to a variable.

var firstLink = document.getElementById("testLink");

As you have retrieved the reference to the element node, you can finally construct
a proper event handler.

firstLink.onclick = linkClick;

The complete syntax is as follows (fg. 33):

function linkClick(){

 this.className = "current";
}

var firstLink = document.getElementById("testLink");
firstLink.onclick = linkClick;

JAVASCRIPT QUICKSTART GUIDE

74

fg. 33 : Using an event handler to change the link color.

fg. 34 : Changing multiple properties on a click event.

75

Events

Considering that JavaScript is a very flexible language you can actually compact
this in two lines of code, but you lose some of the flexibility.

document.getElementById("testLink").onclick = function
linkClick() {

 this.className = "current";
}

The linkClick function that is triggered by the onclick event doesn’t have
to be simple. You can change more than one property and even write complex scripts
that deal with different situations. For example, the following code changes the text of
the link and adds a class (fg. 34).

function linkClick(){

 this.className = "current";
 this.textContent = "Party Finished"
}

var firstLink = document.getElementById("testLink");
firstLink.onclick = linkClick;

No parentheses are added after the function name when the function is assigned
to the event because if you used the linkClick() syntax with parentheses, you
would be executing the function and assigning its value to onclick. When you don’t
use parentheses you assign the function (not the value) to the onclick property. You
no longer control how the event handler function is executed, as the browser executes
the function for you by automatically passing an Event object to the handler function.

Event Listeners
The more recent innovation to handling events is called an event listener. An event

listener deals with multiple functions at the same time, although older browser support is
lacking. The event listener is attached to the element via the addEventListener()
method, which takes three properties.

JAVASCRIPT QUICKSTART GUIDE

76

The following example rewrites the previous code and changes the event handler
to an event listener. The function remains the same.

function linkClick(){

 this.className = "current";
 this.textContent = "Party Finished"
}

var firstLink = document.getElementById("testLink");
firstLink.addEventListener("click", linkClick, false);

Instead of the event property, what is attached to the firstlink variable is the
addEventListener() method. Within the parentheses you first have the event
(without the preceding ‘on’), followed by the name of the function and something
called event flow. Event flow indicates the order in which the event is captured, and it
is usually set to false.

77

SUMMARY & Moving on

When you decide to learn something as complicated as JavaScript, there is a long
process ahead of you. It is not sufficient to get acquainted with information; we have to
apply that information in practical situations and real-life examples.

This book introduced the fundamental concepts of JavaScript and its approach to
programming. You learned that JavaScript is a scripting language that enables you to
enhance web pages by providing dynamic and interactive content. You looked into the
process the browser follows when it interprets web pages, parsing the code element by
element according to JavaScript instructions. You saw that JavaScript code is embedded
into the web page itself, its presence marked with the <script> elements. Starting
from the basic syntax and statement structure, in the second chapter you built up your
knowledge of JavaScript’s data types and variables. Particularly, you now know that
JavaScript supports a number of types of data, such as numbers, text, and booleans.
Numbers behave like numbers should, text is represented by strings of characters and is
surrounded by quotation marks, and booleans are either true or false. These data types
are stored in variables, committing their values to memory so they can be used later in
your code. However, before giving value to a variable you are now aware that you must
first declare its existence to the JavaScript interpreter. You also familiarized yourself
with an array as a special type of variable that can hold more than one piece of data,
which is managed by a unique index number.

The third chapter covered the core of the JavaScript language and its syntax.
Specifically, you looked into decision-making with conditional statements and repetitive
code use with loops. You learned that if, else and else if statements give the
code its intelligence through the ability to make decisions. Determining whether a
condition is true or false can help you decide on a course of action to follow, and in
using the statements you can choose the block of code that will be executed respectively.
Then you looped the code with while and for loops, as it is often necessary to repeat

JAVASCRIPT QUICKSTART GUIDE

78

a block of code a number of times. You learned that looping requires initialization,
condition testing, and increments in order to successfully execute blocks of code a
specified number of times.

The fourth chapter finished looking at the JavaScript core scripting capabilities
by observing functions as reusable bits of code. Although there are main built-in
functions available, JavaScript enables you to define and use your own functions using
the function keyword. You saw that functions can have zero or more parameters passed
to them and can return a value if that is their intended purpose. In relation to functions,
you learned about variable scope, in which variables declared outside a function are
available globally while variables defined inside a function are private to that function
and can’t be accessed by the main code.

Chapter five moved on to the vital concept of objects. You learned that JavaScript
is an object-based language as it represents things, such as strings, dates, and arrays
using this object concept. You created new objects with the object constructor function
or literal notation and also set the properties of those objects and defined their methods.
You also learned how to access these properties and call these methods when needed.

Chapter six covered the DOM and how it offers means to access web page elements.
You learned that the DOM represents the HTML document as a tree structure. You
then learned how this tree structure makes it possible to navigate through its “branches”
to different elements to use their properties and methods. You located element nodes to
select individual elements and groups of elements. You then manipulated the content
by either adding new elements or changing the existing structure.

You now have the basic knowledge and understanding to move on to learning
more advanced concepts. You can use JavaScript to evaluate and interact with form
data. To do this you also need to learn about serialization to translate the structure and
information of the object. You can personalize the user experience by learning how to
store information on local computers with cookies. You can push things further with
AJAX, creating uninterrupted applications that don’t require page refreshing for server
communication. You can explore JavaScript frameworks such as jQuery or Modernizr
to see how you can take JavaScript to its limit and easily create sophisticated high-class
applications. Finally, you can learn how to create the perfect code with advanced error
handling and using sophisticated debugging tools.

79

glossary
Argument -
A variable used by a function
that has been passed to
that function.

Array -
A collection of values in a
single data type.

Boolean -
A data type accepting
true/false variables.

Constructor -
A way to create a new instance
of an object.

CSS -
Cascading StyleSheets.

DOM -
A collection of definitions that
allow a program written in
JavaScript to interact with the
objects on the web page.

ECMAScript -
The core specification of the
JavaScript language.

Event -
Something that happens on a
web page.

Function -
A group of statements that have
been collected together and
given a name.

HTML -
HyperText Markup Language.

Instance -
A specific representation of
an object.

JavaScript -
A scripting language allowing
for improved interaction
between users and web pages

Method -
A function attached to a
particular object.
includes hyperlinks.

Node -
A unit representation from the
DOM tree structure.

Object -
An individual item.

Operator -
A way to change/evaluate the
content of a variable.

Parsing -
The process of reading the
source code of the program in
order to determine what the
code is supposed to do.

Properties -
The characteristics of a
particular object.

80

String -
A data type for text elements.

Variable -
A named location used for
storing values.

W3C -
World Wide Web Consortium.

We are a multi-media publishing company that provides reliable, high-quality and easily
accessible information to a global customer base. Developed out of the need for beginner-
friendly content that is accessible across multiple formats, we deliver reliable, up-to-date, high-
quality information through our multiple product offerings.

Through our strategic partnerships with some of the world’s largest retailers, we are able
to simplify the learning process for customers around the world, providing them with an
authoritative source of information for the subjects that matter to them. Our end-user focused
philosophy puts the satisfaction of our customers at the forefront of our mission. We are
committed to creating multi-media products that allow our customers to learn what they want,
when they want and how they want.

ClydeBank Technology is a division of the multimedia-publishing firm ClydeBank
Media LLC. ClydeBank Media’s goal is to provide affordable, accessible information to a
global market through different forms of media such as eBooks, paperback books and audio
books. Company divisions are based on subject matter, each consisting of a dedicated team of
researchers, writers, editors and designers.

For more information, please visit us at :
www.clydebankmedia.com
or contact info@clydebankmedia.com

about
clydebank

Thank you for choosing ClydeBank Media as your source
for information. We hope you enjoyed the book and that
you have found it a valuable aid in your education.

Our company survives based on feedback from
customers like you. Your feedback helps inform the
purchasing decision of customers who come after you
and most importantly, allows us to constantly improve
our products.

If you have any questions or need support for your order,
please contact us at support@clydebankmedia.com.

http://www.audible.com/write-review?asin=B01AMOJCL6

STAY
INFORMED

Your Source for All Things Technology

Stay on top of the latest business trends by
joining our free mailing list today at:

www.clydebankmedia.com/technology-blog

Why Should I Sign Up for the Mailing List?

• Be the first to know about new products
• Receive exclusive promotions & discounts
• Get a $10 ClydeBank Media gift card!

Check out these other great audiobooks by:

ITIL For
Beginners

The Complete
Beginner’s Guide
to ITIL

ITSM QuickStart
Guide

The Simplified
Beginner’s Guide
to IT Service
Management

HTML QuickStart
Guide

The Simplified
Beginner’s Guide
to HTML

SQL QuickStart
Guide

The Simplified
Beginner’s Guide
to SQL

http://www.audible.com/pd/Science-Technology/ITIL-for-Beginners-Audiobook/B015QJ2S54/ref=a_search_c4_1_1_srTtl?qid=1443147451&sr=1-1
http://www.audible.com/pd/Science-Technology/ITSM-QuickStart-Guide-Audiobook/B01H4EDR22/ref=a_search_c4_1_1_srTtl?qid=1466234426&sr=1-1
http://www.audible.com/pd/Science-Technology/HTML-QuickStart-Guide-Audiobook/B0195JZIJE/ref=a_search_c4_1_7_srTtl?qid=1449879112&sr=1-7
http://www.audible.com/pd/Science-Technology/SQL-QuickStart-Guide-Audiobook/B018F4AT8U/ref=a_search_c4_1_3_srTtl?qid=1448515099&sr=1-3

